9 research outputs found

    Investigating K-12 Computing Education in Four African Countries (Botswana, Kenya, Nigeria, and Uganda)

    Get PDF
    As K-12 computing education becomes more established throughout the world, there is an increasing focus on accessibility for all, whether in a particular country or setting or in areas of the world that may not yet have computing established. This is primarily articulated as an equity issue. The recently developed capacity for, access to, participation in, and experience of computer science education (CAPE) Framework is one way of demonstrating stages and dependencies and understanding relative equity, taking into consideration the disparities between sub-populations. While there is existing research that covers the state of computing education and equity issues, it is mostly in high-income countries; there is minimal research in the context of low-middle-income countries like the sub-Saharan African countries

    Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system

    Get PDF
    IntroductionPolygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products.MethodsIn this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis.ResultsA total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase.DiscussionAerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products

    State-of-the-art self-luminescence: a win-win situation

    No full text
    Self-luminescence, which eliminates the real-time external optical excitation, can effectively avoid background autofluorescence in photoluminescence, endowing with ultrahigh signal-to-noise ratio and sensitivity in bioassay. Furthermore, in situ generated and emitted photons have been applied to develop excitation-free diagnostics and therapeutic agents against deeply seated diseases. "Enhanced" self-luminescence, referring to the aggregation-induced emission (AIE)-integrated self-luminescence systems, is endowed with not only the above merits but also other superiorities including stronger luminous brightness and longer half-life compared with "traditional" self-luminescence platforms. As an emerging and booming hotspot, the "enhanced" self-luminescence facilitated by the win-win cooperation of the aggregation-induced emission and self-luminescent techniques has become a powerful tool for interdisciplinary research. This tutorial review summarizes the advancements of AIE-assisted self-luminescence including chemiluminescence and afterglow imaging, starting from the discussion on the design and working principles, luminescent mechanisms of self-luminescence fuels, versatile integrated approaches and advantages, and a broad range of representative examples in biosensors and oncotherapy. Finally, the current challenges and perspectives are discussed to further actuate the development of "enhanced" self-luminescence agents for biomedical diagnosis and treatment.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)This work was partially supported by the National Natural Science Foundation of China Grant (21788102), the Research Grants Council of Hong Kong (16305518, 16307020, C6014- 20W, C6009-17G and 16305618), the Innovation and Technology Commission (ITC-CNERC14SC01), and the Material Science Foundation of Guangdong Province (2019B121205012); J. F. thanks National Science Foundation of China 21925802, 21878039; K. P. thanks Singapore Ministry of Education, Academic Research Fund Tier 1 (2019-T1-002-045, RG125/19, RT05/ 20), Academic Research Fund Tier 2 (MOE2018-T2-2-042), and A*STAR SERC AME Programmatic Fund (SERC A18A8b0059) for the financial support

    Benzopyranones from the Endophytic Fungus Hyalodendriella sp. Ponipodef12 and Their Bioactivities

    No full text
    The endophytic fungus Hyalodendriella sp. Ponipodef12 was isolated from the hybrid ‘Neva’ of Populus deltoides Marsh × P. nigra L. In this study, four benzopyranones were isolated from the ethyl acetate extract of Hyalodendriella sp. Ponipodef12, and identified as palmariol B (1), 4-hydroxymellein (2), alternariol 9-methyl ether (3), and botrallin (4) by means of physicochemical and spectroscopic analysis. All the compounds were evaluated for their antibacterial, antifungal, antinematodal and acetylcholinesterase inhibitory activities. 4-Hydroxymellein (2) exhibited stronger antibacterial activity than the other compounds. Palmariol B (1) showed stronger antimicrobial, antinematodal and acetylcholinesterase inhibitory activities than alternariol 9-methyl ether (3) which indicated that the chlorine substitution at position 2 may contribute to its bioactivity. The results indicate the potential of this endophytic fungus as a source of bioactive benzopyranones

    Astaxanthin attenuated cigarette smoke extract-induced apoptosis via decreasing oxidative DNA damage in airway epithelium

    No full text
    Chronic obstructive pulmonary disease (COPD) is a lung inflammatory disease that is associated with environmental allergic component exposure. Cigarette smoke is an environmental toxicant that induces lung malfunction leading to various pulmonary diseases. Astaxanthin (AST) is a carotenoid that shows antioxidant and anti-inflammatory activities which might be a promising candidate for COPD therapy. In this study, we released that AST could attenuate cigarette smoke-induced DNA damage and apoptosis in vivo and in vitro. AST administration ameliorated cigarette smoke extract (CSE)-induced activation of Caspase-3 and apoptosis. Pretreated mice with AST significantly decrease CSE-induced DNA damage which shows lower nuclear γ-H2AX level. AST treatment also dramatically reduces the production of intracellular reactive oxygen species (ROS) by suppressing the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme 4 (NOX4) and dual oxidase 1 (DUOX1). Taken together, this study suggested that AST can decrease CSE-induced DNA damage and apoptosis by inhibiting NOX4/DUOX1 expression that promotes ROS generation. AST may be a potential protective agent against CSE-associated lung disease that is worth in-depth investigation
    corecore